Los controladores FLEXmax 80 son reguladores de carga con seguimiento de punto de máxima potencia (MPPT). El nuevo algoritmo del FLEXmax es a la vez continuo y activo, incrementando la producción energética hasta un 30%. Con un sistema de ventilación mejorado, el FLEXmax mantiene su salida de hasta 80A hasta una temperatura ambiente de 40C°.
El FLEXmax incorpora todas las ventajas del revolucionario MX60 diseñado por OutBack Power Systems:
- Amplio rango de tensiones de batería y capacidad de trabajar con alto voltaje de módulos FV cargando una batería de voltaje menor
- Pantalla retroiluminada y botones integrados con acceso a la información
- La comunicación en red con el resto de equipos OutBack Power Systems permite su programación remota a través del controlador programador MATE
Incluye idiomas de programación español e inglés seleccionables en el mismo equipo.
Características
- Incrementa la producción de los paneles solares en un 30%
- Algoritmo avanzado de seguimiento del punto de máxima potencia en tiempo real
- 80A de salida hasta 40C°
- Voltajes de batería de 12 a 60 VCC automático
- Programable a través de la red de datos OutBack
- Salida auxiliar programable
- 128 días de registro de datos
- Compatible con sistemas de tierra positivo o negativo
Funcionamiento de los reguladores MPPT
Los reguladores MPPT son capaces de disasociar la tensión de trabajo del campo fotovoltaico de la de la batería. Mediante un convertidor DC/DC el regulador MPPT permite que la tensión de los paneles no dependa de la tensión que fija la batería del sistema. Por lo tanto, el seguidor del punto de máxima potencia es capaz de situar la tensión de trabajo de los paneles en el punto más conveniente para obtener la máxima eficiencia de los paneles independientemente de las condiciones externas. De esta forma el mppt puede modificar constantemente la tensión de trabajo de los paneles y verificar la salida para comprobar en que punto se obtiene la máxima potencia.
*Aunque los reguladores MPPT son imprescindibles para paneles de 60 células, también pueden ser utilizados para paneles de otro número de células obteniendo el mayor rendimiento posible del panel en cada momento.
IMPORTANTE
A la hora de instalar el regulador
Conectar siempre primero la batería y luego los paneles. Para desconectar, desconectar siempre primero los paneles y luego las baterías.
Los reguladores se pueden dañar si están conectados a los paneles y no a la batería.
Calcular el regulador MPPT necesario para una instalación fotovoltaica
Hay que tener en cuenta 3 aspectos.
1.- Máxima tensión en el campo fotovoltaico (Vdcmax)
2.- Máxima corriente de carga / máxima potencia en el campo fotovoltaico.
3.- Las cadenas de paneles tienen que ser identicas
1.- Para la mayoría de reguladores no se puede sobrepasar los 150 Vdc (algunos 100Vdc) en el campo fotovoltaico bajo ningún concepto. IMPORTANTE tener en cuenta: Periodos de muy baja temperatura donde la tensión de los paneles se verá incrementada varios voltios *(Este valor depende del TONC del panel, de la radiación y de la temperatura exterior) y los periodos como por ejemplo a la salida del sol donde no hay apenas radiación solar pero el panel tiene la máxima tensión entre terminales (cercana a Voc)
****Por ejemplo un panel de 250w y 60 células con tensión de circuito abierto (Voc) de 37 voltios podría llegar hasta unos 40 voltios a la salida del sol un día de invierno con una temperatura de -10 grados.****
2.- El cálculo de la corriente de carga se hace dividiendo la potencia del campo fotovoltaico entre la tensión de la batería. Por lo tanto no será el mismo resultado para sistemas de 12 y 24 voltios.
Si utilizamos como ejemplo una instalación con baterías de 24 voltios y 4 paneles de 240W tenemos: ( 240W * 4= 960W )
960W / 24V = 40 Amperios; En este caso podemos utilizar un regulador mppt de 40 amperios
Si la instalación fuese a 12 voltios
960W / 12V = 80 Amperios; Seria necesario un regulador mppt de 80 amperios.
3.- Si queremos configurar un regulador mppt de 40A y con un Vdcmax =150V
Conectaríamos los 4 paneles en 2 cadenas en paralelo de 2 paneles en serie. De esta forma el campo fotovoltaico nunca sobrepasaría los 150V de límite porque aún en las peores condiciones de temperatura y radiación la tensión de trabajo no sobrepasaría los 80 voltios.
Nunca los conectaríamos los 4 paneles en serie que supondría una tensión de trabajo de 37V * 4 = 148 Voltios. Pero que en condiciones de baja temperatura y poca radiación podrían llegar hasta los 40V * 4 = 160V y romper el regulador.
TEORÍA
Valores de voltaje de la batería
Lo que conocemos como una batería de 24 voltios, es una batería de 24 voltios nominales. Esto quiere decir que utilizamos la tensión de 24 voltios como referencia, pero pocas veces la tensión de la batería se encuentra en los 24 voltios exactos.
De forma genérica, podemos decir que una batería de 24 voltios se encuentra cargada a unos 27,4 voltios y totalmente descargada a unos 23 voltios. (valores aproximados). Dependiendo del tipo de la batería, AGM, GEL, plomo-ácido abierta, etc los valores de tensión varían considerablemente.
A día de hoy existen 2 formas para conocer el estado de carga de una batería:
Midiendo la tensión.- Es el método más económico pero también el menos fiable. Si medidos la tensión entre bornes de una batería que está en "reposo" ( sin entrada ni salida de corriente) y nos da un valor por ejemplo de 26 voltios. Y posteriormente medimos la misma batería pero mientras está entregando corriente a una carga (sale corriente) veremos como el valor de tensión medido es inferior. Y si la medimos mientras está entrando corriente a la batería el valor será superior.
Esto hecho es debido a las variaciones de la resistencia interna de la batería y que puede llegar a suponer grandes cambios en la tensión para corrientes elevadas.
Algoritmos de carga.- En este método además de medir la tensión entre bornes de la batería, se lleva un contaje de amperios cargados y amperios consumidos. Por lo tanto no es susceptible a las variaciones bruscas de tensión producidas por la corriente de paso. Cada fabricante tiene un algoritmo de carga que ha ido mejorando con el tiempo.
Etapas de carga de una batería
Para la carga correcta de una batería se recomineda que el cargador tenga como mínimo 3 etapas de carga.
Por ejemplo, para una batería estacionaria de plomo-ácido abierta los valores de tensión en las distintas etapas de carga serían los siguientes:
Bulk.- (carga en bruto).- En esta primera etapa, el regulador permite el paso del máximo de corriente disponible hacia la batería hasta alcanzar el valor de tensión de absorción alrededor de los 28,8 voltios, y que supone el 80% - 90% de la capacidad de la batería
Absorción.- Durante esta fase, se mantiene la tensión alcanzada en la fase bulk durante un periodo de tiempo que puede variar desde unos pocos minutos hasta las 2 horas (dependiendo del regulador). La corriente de carga se reduce poco a poco hasta el 10% de la corriente máxima.
Flotación.- Al entrar en esta fase se considera que la batería está totalmente cargada. La tensión se reduce en torno a los 27,4 voltios y se mantiene un pequeña corriente de carga para compensar la autodescarga de la batería.
Cuando se consume energía de la batería empieza de nuevo el ciclo y se considera que la batería ha tenido un ciclo de carga y descarga. La profundidad del mismo dependerá de la tensión mínima alcanzada durante la descarga.